加拿大华人网
当前位置:首页 > 新闻 > 数码科技

丘成桐数学论坛演讲:数学物理如何走在一起(组图)

www.sinoca.com 2012-04-29  



  广义相对论

  爱因斯坦研究重力的经历,固然令人神往,他的创获更是惊天动地。但是黎曼几何学在其中发挥的根本作用,也是昭昭然不可抹杀的。

  狭义相对论告诉我们,时间和空间浑为一体,形成时空,不可分割。爱因斯坦进一步探究重力的本质,他的友人马塞尔・格罗斯曼(Marcel Grossman)是数学家,爱氏透过他认识到黎曼和里奇(Ricci)的工作。黎曼引进了抽象空间的概念,并且讨论了它的距离和曲率。爱因斯坦利用这种空间,作为他研究重力的舞台。

  爱因斯坦也引用了里奇的工作,以他创造的曲率来描述物质在时空的分布。里奇曲率乃是曲率张量的迹,是曲率的某种平均值。它满足的比安奇恒等式,奇妙地可以看成一条守恒律。爱因斯坦利用了这条守恒律来把重力几何化,从此我们不再视重力为物体之间的吸引力。新的观点是,物体的存在使空间产生了曲率,重力应当看作是这种曲率的表现。

  对历史有兴趣的读者,爱因斯坦的自家说辞更具说服力。他说:“这套理论指出重力场由物质的分布决定,并随之而演化,正如黎曼所猜测的那样,空间并不是绝对的,它的结构与物理不能分割。我们宇宙的几何绝不像欧氏几何那样孤立自足。”

  讲到自己的成就时,爱因斯坦写道:“就学问本身而言,这些理论的推导是如此行云流水,一气呵成,聪明的人花点力气就能掌握它。然而,多年来的探索,苦心孤诣,时而得意,时而气馁,到事竟成,其中甘苦,实在不足为外人道。”

  爱因斯坦研究重力的经历,固然令人神往,他的创获更是惊天动地。但是黎曼几何学在其中发挥的根本作用,也是昭昭然不可抹杀的。

  半个多世纪后,我研习爱因斯坦方程组,发现物质只能决定时空的部分曲率,为此心生困惑,自问能否找到一个真空,即没有物质的时空,但其曲率不平凡,即其重力为零。当然,著名爱因斯坦方程史瓦兹契德(Schwarzschild)解具有这些性质。它描述的乃是非旋转的黑洞,这是个真空,但奇怪地,异常的重力产生了质量。然而这个解具有一个奇点,在那里所有物理的定律都不适用。

  我要找的时空不似史瓦兹契德解所描绘的那样是开放无垠的,反之,它是光滑不带奇点,并且是紧而封闭的。即是说,有没有一个紧而不含物质的空间即封闭的真空宇宙其上的重力却不平凡?这问题在我心中挥之不去,我认为这种空间并不存在。如果能从数学上加以论证,这会是几何学上的一条美妙的定理。

  卡拉比猜想

  在证明卡拉比猜想时,我引进了一个方案,用以寻找满足卡拉比方程的空间,这些空间现在通称为卡拉比―丘空间。我深深地感到,我无心插柳,已经进入了一界数学高地。它必定与物理有关,并能揭开自然界深深埋藏的隐秘。

  从上世纪七十年代开始,我便在考虑这个问题。当时,我并不知道几何学家欧亨尼奥・卡拉比(Eugenio Calabi)早已提出差不多同样的问题。他的提问透过颇为复杂的数学语言来表述,其中涉及到克勒(Kaehler)流形、里奇曲率、陈类等等,看起来跟物理沾不上边。事实上,卡拉比抽象的猜想也可以翻过来,变为广义相对论里的一个问题。

  新的内容乃是要求要找的时空具有某种内在的对称性,这种对称物理学家称之为超对称。于是上述的问题便变成这样:能否找到一个紧而不带物质的超对称空间,其中的曲率非零,即具有重力?

  我与其他人一起试图证明卡拉比猜想所描述的空间并不存在,花了差不多三年。这猜想不仅指出封闭而具重力的真空的存在性,而且还给出系统地大量构造这类空间的途径,大家都认为世间哪有这样便宜的东西可捡。可是,纵然不乏怀疑卡拉比猜想的理由,但没人能够反证它。

  1973年我出席了在斯坦福举行的国际几何会议。这会议是由奥斯曼(Osserman)和陈省身老师组织的。或是由于我与两人的关系,我有幸作出两次演讲。在会议期间,我告诉了一些相识的朋友,说已经找到了卡拉比猜想的反例。消息一下子传开了,徇众要求,当天晚上另作报告。那晚三十多位几何工作者聚集在数学大楼的三楼,其中包括卡拉比、陈师和其他知名学者。我把如何构造反例说了一遍,大家似乎都非常满意。

  卡拉比还为我的构造给出一个解释。大会闭幕时,陈师说我这个反例或可视为整个大会最好的成果,我听后既感意外,又兴奋不已。

  可是,真理总是现实的。两个月后我收到卡拉比的信,希望我厘清反例中一些他搞不清楚的细节。看见他的信,我马上就知道我犯了错。接着的两个礼拜,我不眠不休,希望重新构造反例,身心差不多要垮掉。每次以为找到一个反例,瞬即有微妙的理由把它打掉。经过多次失败后,我转而相信这猜想是对的。于是我便改变了方向,把全部精力放在猜想的证明上。花了几年工夫,终于在1976把猜想证明了。

  在斯坦福那个会上,物理学家罗伯特・杰勒西(Robert Geroch)在报告中谈到广义相对论中的一个重要课题正质量猜想。这猜想指出,在任何封闭的物理系统中,总质量/能量必须是正数。我和舒恩(Schoen)埋头苦干,利用了极小曲面,终于把这猜想证明了。

  这段日子的工作把我引到广义相对论,我们证明了几条有关黑洞的定理。与相对论学者交流的愉快经验,使我更能开放怀抱与物理学家合作。至于参与弦论的发展,则是几年之后的事了。

  在证明卡拉比猜想时,我引进了一个方案,用以寻找满足卡拉比方程的空间,这些空间现在通称为卡拉比―丘空间。我深深地感到,我无心插柳,已经进入了一界数学高地。它必定与物理有关,并能揭开自然界深深埋藏的隐秘。然而,我并不知道这些想法在那里会大派用场,事实上,当时我懂得的物理也不多。

  弦论

  弦论认为时空的总数为十。我们熟悉的三维是空间,加上时间,那便是爱因斯坦理论中的四维时空。此外的六维属于卡拉比―丘空间,它独立地暗藏于四维时空的每一点里。我们看不见它,但弦论说它是存在的。

  1984年,我接到物理学家加里・霍罗威茨(Gary Horowitz)和安迪・斯特罗明格(Andy Strominger)的电话。他们兴冲冲地谈到有关宇宙真空状态的一个模型,这模型是建基于一套叫弦论的崭新理论上的。

  弦论的基本假设是,所有最基本的粒子都是由不断振动的弦线所组成的,时空必须容许某种超对称性。同时时空必须是十维的。

  我在解决卡拉比猜想时证明存在的空间得到霍罗威茨和斯特罗明格的喜爱。他们相信这些空间会在弦论中担当重要的角色,原因是它们具有弦论所需的那种超对称性。他们希望知道这种看法对不对,我告诉他们,那是对的。他们听到后十分高兴。

  不久,爱德华・威滕(Edward Witten)打电话给我,我们是上一年在普林斯顿相识的。他认为就像当年量子力学刚刚面世那样,理论物理学最激动人心的时刻来临了。他说每一位对早期量子力学有贡献的人,都在物理学史上留名。

  早期弦学家如迈克尔・格林(Michael Green)和约翰・施瓦茨(John Schwarz)等人的重要发现,有可能终究把所有自然力统一起来。爱因斯坦在他的后半生花了三十年致力于此,但至死也未竟全功。

  当时威滕正与凯德勒斯(Candelas)、霍罗威茨和斯特罗明格一起,希望搞清楚弦论中那多出来的六维空间的几何形状。他们认为这六维卷缩成极小的空间,他们叫这空间为卡拉比―丘空间,因为它源于卡拉比的猜想,并由我证明其存在。

  弦论认为时空的总数为十。我们熟悉的三维是空间,加上时间,那便是爱因斯坦理论中的四维时空。此外的六维属于卡拉比―丘空间,它独立地暗藏于四维时空的每一点里。我们看不见它,但弦论说它是存在的。

  这个添了维数的空间够神奇了,但弦理论并不止于此,它进一步指出卡拉比―丘空间的几何,决定了这个宇宙的性质和物理定律。哪种粒子能够存在,质量是多少,它们如何相亘作用,甚至自然界的一些常数,都取决于卡拉比―丘空间或本书所谓“内空间”的形状。

  理论物理学家利用狄克拉(Dirac)算子来研究粒子的属性。透过分析这个算子的谱,可以估计能看到粒子的种类。时空具有十个维数,是四维时空和六维卡拉比―丘空间的乘积。因此,当我们运用分离变数法求解算子谱时,它肯定会受卡拉比―丘空间所左右。卡拉比―丘空间的直径非常小,则非零谱变得异常大。这类粒子应该不会观测到,因为它们只会在极度高能量的状态下才会出现。
加拿大华人网 http://www.sinoca.com/


上一篇:没评上职称 武汉大学副教授愤怒痛揍教授林莉红
下一篇:中国“一箭双星”成功发射两颗北斗导航卫星(图)

[声明] 加拿大华人网刊载此文不代表同意其说法或描述,仅为提供更多信息,也不构成任何投资或其他建议。转载需经加拿大华人网同意并注明出处。本网站部分文章是由网友自由上传。对于此类文章本站仅提供交流平台,不为其版权负责。如果您发现本网站上有侵犯您的知识产权的文章,请联系我们。

网站完整版 | 广告服务 | 网站声明 | 网站留言 | 联系我们 | RSS
Copyright © 2000-2015 加拿大华人网 SinoCa.COM All Rights Reserved.