高斯 德国数学家和物理学家
理查德・舒恩 斯坦福大学数学教授
迈克尔・格林 弦学家
卡拉比 意大利几何学家
黎曼 德国数学家和物理学家
约翰・米尔诺 美国数学家
陈省身 浙江嘉兴人,国际数学大师
卡拉比―丘空间
丘成桐 1949年出生于广东汕头。1983年获得素有数学诺贝尔奖之称的菲尔兹奖,迄今仍是华人数学家中唯一的获奖者。1979年后,丘成桐把主要精力转向振兴祖国数学事业上,先后创建了香港中文大学数学所、中科院晨兴数学中心、浙江大学数学中心和清华大学数学中心,并亲自担任这些研究机构的负责人。他还为这些研究机构募集资金1.5亿元。他是当今世界公认的最著名的国际数学大师之一,被国际数学界公认为四分之一世纪里最有影响的数学家。他现任美国哈佛大学讲座教授、国际顶尖数学杂志《微分几何杂志》主编,所获荣誉还有:瑞士皇家科学院的克雷福特奖、美国国家科学奖、美国国家科学院院士、中国科学院首批外籍院士、俄罗斯科学院外籍院士、台湾中研院院士、世界华人数学家大会主席、中华人民共和国国际科学技术合作奖。
数学和物理如何走在一起
广义相对论卡拉比猜想弦论结语
数学和物理如何走在一起
演讲人:丘成桐 地点:三亚・第二届国际数学论坛
今天要讲的,是数学和物理如何互动互利,这种关系在卡拉比―丘(Calabi―Yau)空间和弦论的研究中尤为突出。这个题目非出偶然,它正是我和史蒂夫・纳第斯(Steve Nadis)的新书《内空间的形状》的主旨。书中描述了这些空间背后的故事、个人的经历和几何的历史。
我写这本书,是希望读者透过它,了解数学家是如何看这世界的。数学并非一门不食人间烟火的抽象学问,相反地,它是我们认识物理世界不可或缺的工具。
现在,就让我们沿着时间,或更确切地沿着时空从头说起。
黎曼几何学
黎曼的创见,颠覆了前人对空间的看法,给数学开辟了新途径。几何的对象,从此不再局限于平坦而线性的欧几里德空间内的物体。黎曼引进了更抽象的、具有任何维数的空间。
1969年,我到了伯克利研究院。在那里我了解到,十九世纪几何学在高斯和黎曼的手上经历了一场翻天覆地的变化。黎曼的创见,颠覆了前人对空间的看法,给数学开辟了新途径。
几何的对象,从此不再局限于平坦而线性的欧几里德空间内的物体。黎曼引进了更抽象的、具有任何维数的空间。在这些空间里,距离和曲率都具有意义。此外,在它们上面还可以建立一套适用的微积分。
大约五十年后,爱因斯坦发觉包含弯曲空间的这种几何学,刚好用来统一牛顿的重力理论和狭义相对论,沿着新路迈进,他终于完成了著名的广义相对论。
在研究院的第一年,我念了黎曼几何学。它与我在香港时学的古典几何不一样,过去我们只会讨论在线性空间里的曲线和曲面。在伯克利,我修了斯巴涅尔(Spanier)的代数拓扑、劳森(Lawson)的黎曼几何、莫雷伊(Morrey)的偏微分方程。此外,我还旁听了包括广义相对论在内的几门课,我如饥似渴地尽力去吸收知识。
课余的时间都呆在图书馆,它简直成了我的办公室。我孜孜不倦地找寻有兴趣的材料来看。圣诞节到了,别人都回去和家人团聚。我却在读《微分几何学报》上约翰・米尔诺(John Milnor)的一篇论文,它阐述了空间里曲率与基本群的关系。我既惊且喜,因为它用到了我刚刚学过的知识上。
米尔诺的文笔是如此流畅,我通读此文毫不费力。他文中提及普里斯曼(Preissman)的另一篇论文,我也极感兴趣。
从这些文章中可以见到,负曲率空间的基本群受到曲率强烈的约束,必须具备某些性质。基本群是拓扑上的概念。
虽然,拓扑也是一种研究空间的学问,但它不涉及距离。从这角度来看,拓扑所描绘的空间并没有几何所描绘的那样精细。几何要量度两点间的距离,对空间的属性要知道更多。这些属性可以由每一点的曲率表达出来,这便是几何了。
举例而言,甜甜圈和咖啡杯具有截然不同的几何,但它们的拓扑却无二样。同样,球面和椭球面几何迥异但拓扑相同。作为拓扑空间,球面的基本群是平凡的,在它上面的任何闭曲线,都可以透过连续的变动而缩成一点。但轮胎面则否,在它上面可以找到某些闭曲线,无论如何连续地变动都不会缩成一点。由此可见,球面和轮胎面具有不同的拓扑。
普里斯曼定理讨论了几何(曲率) 如何影响拓扑(基本群),我作了点推广。在影印这些札记时,一位数学物理的博士后阿瑟・费舍尔(Arthur Fisher)嚷着要知道我干了什么。他看了那些札记后,说任何把曲率与拓扑扯上关系的结果,都会在物理学中用上。这句话在我心中留下烙印,至今不忘。
加拿大华人网 http://www.sinoca.com/