AI历史的方法论历史研究素有两种方法,基于事件的,基于课题(issue)的。人和事的八卦都属前种。纽厄尔在1981年为一本颇为有料的文集《信息研究》贡献的一篇文章 “AI历史的智力课题”走了第二条路线。他的方法也挺有意思。他把AI历史当作斗争史,把历史分为两个阶级、两条路线的斗争,于是历史成了一串儿对立的议题,如模拟vs数字,串行vs并行,取代vs增强,语法vs语义,机械论vs目的论,生物学vs活力论,工程vs科学,符号vs连续,逻辑vs心理等,在每一议题下有进一步可分的子议题,如在逻辑vs心理下又有定理证明vs问题求解等。
被提到最多的是人工智能vs控制论。在Google ngrams里试试Cybernetics和Artificial Intelligence两个词在Google Books里出现的词频,可以看出学科的起伏跌宕。前苏联,倒是一直用“控制论”指称AI,人工智能和铁幕是一个节奏。美国最早办的一批计算机相关的系科都创办于1960年代中期,那时有些系直接叫“计算机科学系”,而有些则叫“计算机与信息科学系”,带“信息”的都有些“控制论”的背景,如麻省大学计算机与信息系的创办人就有维纳的学生麦克·阿比卜。而密歇根大学则叫计算机与通讯科学系。这些系后来都改名叫计算机系了。而原来的图书馆系现在都纷纷改名叫信息科学系,如伯克利和华盛顿大学的图书馆学院都改名叫信息学院(School of Information),连“科学”都省了。但现在计算机系又有加载信息的趋势,麻省大学和加州大学厄湾分校近年又改名叫信息与计算机科学学院了。大概和现在深度学习及神经网络又峰回路转有关吧。倒是中国的学科简单,一直都有计算机和自动化之分,老死不相往来罢了。
“人工智能”这个词真正被共同体广泛认可是在十年后的1965年,当伯克利的欧陆派哲学家德雷弗斯(Hubert Dreyfus)发表了《炼金术与人工智能》一文之后。这篇文章一开始只是针对纽厄尔和司马贺的工作,几年后这篇文章演变成了那本著名的(或者被AI圈子称为“臭名昭著”的)《计算机不能干什么》一书,则是把整个AI当作靶子。欧陆派哲学家被人诟病数学和科学不通,但德雷弗斯有个数学家的兄弟,和他同一年在哈佛得了应用数学博士,后来又同在伯克利教书,是动态规划的大家,还带过神经网络的博士。哥俩一个立场。有时一个共同体的形成并不是靠内部的团结,而是靠外部的反对。有意思的是《炼金术》一文是德雷弗斯在兰德公司工作时写就的。司马贺后来撰文猛批德雷弗斯,说他滥用兰德公司的标签。德雷弗斯后来抱怨他在 MIT和哈佛食堂吃饭,所有AI的人都躲他远远的。学术争执哪儿都一样。
麦卡锡和明斯基的建议书里罗列了他们计划研究的七个领域:一、自动计算机,所谓“自动”指的是可编程;二、编程语言;三、神经网络;四、计算规模的理论(theory of size of a calculation),这说的是计算复杂性,明斯基后来一直认为计算理论是人工智能的一部分,他早期对理论问题时不时会动动手,后来一手组建了MIT 的计算理论队伍;五、自我改进,这个是说机器学习;六、抽象;七、随机性和创见性。
麦卡锡的原始预算是一万三千五百美元,但洛克菲勒基金会只批了七千五百美元。麦卡锡预计会有六位学界的人出席,会议应该支付每人两个月的薪水一千两百美元,由此可推算出麦卡锡、明斯基当时的年薪在八千美元左右。
除了那六君子外,另外还有四人也参加了达特茅斯会议。他们是来自IBM的撒缪尔(Arthur Samuel)和伯恩斯坦,他们一个研究跳棋,一个研究象棋。达特茅斯的教授摩尔(Trenchard More)也参与了,他后来在工业界混的时间长,少为外人所知。达特茅斯会议中一位被后人忽视的先知是所罗门诺夫(Solomonoff)。
和其他来来往往的人不同,所罗门诺夫在达特茅斯严肃地待了整整一个暑假。他1951年在芝加哥大学跟随费米得了物理硕士就到了MIT。但在芝加哥对他影响最大的是哲学家卡尔纳普。有意思的是神经网络的奠基者之一皮茨也受惠于卡尔纳普。司马贺的回忆录里也讲到自己在芝加哥时听卡尔纳普的课开始启蒙逻辑,从而开始对智能相关的问题感兴趣。这么说来人工智能的两大派:逻辑和神经网络都发源于老卡。这个话题以后有机会再展开。卡尔纳普那时的兴趣是归纳推理,这成为所罗门诺夫毕生的研究方向。所罗门诺夫后来结识了明斯基和麦卡锡,在他们的影响下研究逻辑和图灵机。达特茅斯会议时,他受麦卡锡“反向图灵机”和乔姆斯基文法的启发,发明了“归纳推理机”。他的工作后来被万能的苏联数学家柯尔莫格罗夫(Kolmogorov)重新但又独立地发明了一遍,就是现在俗称“柯尔莫格罗夫复杂性”和“算法信息论”的东西。来自中国的计算理论学者李明现在是这领域的大牛,曾有专著。柯尔莫格罗夫1968年开始引用所罗门诺夫的文章,使得后者在苏联的名声比在西方更加响亮。所罗门诺夫的另一个观点“无限点”(Infinity Point)后来被未来学家库兹维尔改名“奇点”窃为己有。目前AI中广泛用到的贝叶斯推理也可见到所罗门诺夫的开创性痕迹。他一生并没有大富大贵,大部分时间都是在自己的咨询公司Oxbridge(牛津+剑桥,汉语俗称“清北”)拿政府(空军、海军、ARPA和NIH——NIH资助了很多AI研究,以后有空再聊)的研究经费,那公司只有他自己一个雇员。伦敦大学皇家哈洛威学院(Royal Holloway)后来在前苏联学者领导下搞柯尔莫格罗夫奖,他是第一届获奖人,并在那里兼职教授。他的学术自传1997年发表在计算理论杂志《计算机与系统科学》上。明斯基所谓AI孵化出计算理论的说法不是没有道理。
按照麦卡锡和明斯基的说法,这十个人参加了达特茅斯会议,但现在有证据表明会议也有其他的列会者,后来一直做神经网络硬件研究从而躲过AI几十年过山车的斯坦福大学电机系教授维德罗(Bernard Widrow)后来回忆他也去了达特茅斯并且在那儿待了一周。
麦卡锡原来的计划是两个月闭门研讨,但并非所有人都对那个事那么上心。纽厄尔和司马贺只待了一周。纽厄尔后来回忆说达特茅斯会议对他和司马没什么影响。
尽管是“十仙过海”,但给所有人留下最深印象的是纽厄尔和司马贺的报告,他们公布了一款程序“逻辑理论家”(Logic Theorist),这个程序可以证明怀特海和罗素《数学原理》中命题逻辑部分的一个很大子集。司马贺回忆录里说自己学术生涯最重要的两年就是1955和 1956年。这篇文章后来成了AI历史最重要的文章之一。一段有意思的插曲:这篇文章最早是投给逻辑学最重要的刊物《符号逻辑杂志》的,但惨遭主编克里尼退稿,理由是:把一本过时的逻辑书里的定理用机器重证一遍没啥意思。纽厄尔和司马贺给罗素写信报告这一成果,罗老不咸不淡地回复说:“我相信演绎逻辑里的所有事,机器都能干哈。”
值得注意的是“逻辑理论家”对人工智能后来的一个分支“机器定理证明”的影响并不大。哲学家王浩1958年夏天在一台IBM-704机上,只用九分钟就证明了《数学原理》中一阶逻辑的全部定理。当然《数学原理》中罗列的一阶逻辑定理只是一阶逻辑的一个子集,目前,一阶逻辑的机器定理证明比起五十年代已有长足进展,但仍然没有高效的办法。毕竟,王浩证明的是一阶逻辑而“逻辑理论家”只能处理命题逻辑。数学家马丁·戴维斯和哲学家希拉里·普特南合作沿着王浩的思路进一步提出了戴维斯-普特南(DP)证明过程,后来进一步发展为DPLL。王浩对“逻辑理论家”一直持鄙视的态度,认为这是一个不专业的东西。王浩在1983年被授予定理证明里程碑大奖,被认为是定理证明的开山鼻祖。司马贺在他回忆录里则对此不满,认为王浩的工作抵消了“逻辑理论家”的原创性,他们的初衷并不是要有效地证明定理,而是研究人的行为。这是后话,我后续还会有《机器定理证明简史》。
麦卡锡多年后回忆说:他从纽厄尔和司马贺的IPL语言中学到了表处理,这成为他后来发明LISP的基础。明斯基后来接受采访时说他对纽厄尔和司马贺的“逻辑理论家”印象深刻,因为那是第一个可工作的AI程序。但事实上,明斯基当时为大会写的总结里对“逻辑理论家”只是轻描淡写。麦卡锡和明斯基明显是一伙的,会议是他们发动的,旨在创立一门新学科。但纽厄尔和司马贺却抢了他们的风头。美国上世纪五十年代的学术氛围也不免浮躁,这一帮人又都是年轻气盛、野心十足。加拿大华人网 http://www.sinoca.com/